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a b s t r a c t

Visual question answering requires a deep understanding of both images and natural language.
However, most methods mainly focus on visual concept; such as the relationships between various
objects. The limited use of object categories combined with their relationships or simple question
embedding is insufficient for representing complex scenes and explaining decisions. To address this
limitation, we propose the use of text expressions generated for images, because such expressions have
few structural constraints and can provide richer descriptions of images. The generated expressions can
be incorporated with visual features and question embedding to obtain the question-relevant answer.
A joint-embedding multi-head attention network is also proposed to model three different information
modalities with co-attention. We quantitatively and qualitatively evaluated the proposed method on
the VQA v2 dataset and compared it with state-of-the-art methods in terms of answer prediction. The
quality of the generated expressions was also evaluated on the RefCOCO, RefCOCO+, and RefCOCOg
datasets. Experimental results demonstrate the effectiveness of the proposed method and reveal that
it outperformed all of the competing methods in terms of both quantitative and qualitative results.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few years, visual question answering (VQA) has
ttracted substantial attention from both the computer vision and
atural language processing communities (Anderson et al., 2018;
ntol et al., 2015; Ben-Younes, Cadene, Cord, & Thome, 2017;
ukui et al., 2016; Goyal, Khot, Summers-Stay, Batra, & Parikh,
017; Lu et al., 2018; Teney, Anderson, He, & Van Den Hengel,
018; Yu, Yu, Cui, Tao, & Tian, 2019). Compared to the traditional
asks of computer vision or natural language processing, such as
bject detection (Ren, He, Girshick, & Sun, 2015), image caption-
ng (Liu, Wang, & Yang, 2017; Lu, Xiong, Parikh, & Socher, 2017;
edersoli, Lucas, Schmid, & Verbeek, 2017; Rennie, Marcheret,
roueh, Ross, & Goel, 2017; Yu, Tan, Bansal, & Berg, 2017),

racking (Park, Choi, Jain, & Lee, 2013; Roh, Kim, Park, & Lee,
007), face recognition (Kang, Han, Jain, & Lee, 2014; Maeng,
iao, Kang, Lee, & Jain, 2012), action recognition (Kim, Lee, &
ee, 2020; Lee & Lee, 2019; Roh, Shin, & Lee, 2010), or machine
ranslation (Bahdanau, Cho, & Bengio, 2015; Cho et al., 2014),
he VQA is a challenging task that requires a more fine-grained
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semantic understanding of both questions and images jointly,
as well as common sense knowledge to answer accurately. The
recently collected VQA v2 dataset (Antol et al., 2015; Goyal et al.,
2017) provides complementary pairs of questions and answers.
Each pair includes the same question for two semantically similar
images, but the corresponding answers are different. Because
the two images are semantically similar, a VQA model must
be able to perform fine-grained reasoning by understanding the
details of the scene context to answer questions correctly. In this
paper, we propose a framework that can answer visual questions
about a given image and generate human-interpretable textual
explanations for answers.

Most VQA research focuses on directly exploiting visual fea-
tures, such as object attributes or the relationships between ob-
jects, to understand images (Anderson et al., 2018; Hong, Fu,
Uh, Mei, & Byun, 2019; Lu et al., 2018, 2017; Pedersoli et al.,
2017). Some studies have utilized image captions or descriptive
paragraphs to represent the semantic meaning of the image.
The semantic understanding with higher-level information of
the scene such as contexts and relationships which are diffi-
cult to directly extract from low-level features, can be inferred
through the descriptive paragraphs. Such textual representations
can contain the richer and necessary information to improve
model performances (Kim & Bansal, 2019; Wu, Hu, & Mooney,
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Fig. 1. Visualization of the concept of our proposed approach to VQA. Multiple object expressions for an image are generated using our local-scene-aware speaker
module. Then, the VQA model answers questions based on question-relevant object expressions using one of three input modalities.
2019). Appropriate captions are highly helpful for VQA, which
is demonstrated by the fact VQA models that employ human-
annotated captions without images can outperform many VQA
models that use image features (Li, Fu, Yu, Mei, & Luo, 2018).

However, representing an image using a single sentence has
limitations in terms of expressive power, and it is easy to overlook
important attributes or objects when images become complex or
when a question asks a model for specific information. In terms
of object captions, comparison with a few limited objects yields
poor precision and can often generate non-existent objects in
complex scenes (Liu et al., 2017; Mao et al., 2016; Tanaka et al.,
2019; Yu, Poirson, Yang, Berg, & Berg, 2016; Yu et al., 2017).

To address this issue, we propose a novel speaker module that
can produce referring expressions for each specific object. This
module is tailored for answer prediction and is aware of local
contextual information. The referring expression for a target ob-
ject, which is likely to be a question-relevant object in an image,
is generated by considering contextualized spatial neighbors. The
speaker module can describe detailed local scenes, allowing a
VQA model to learn target-object-relevant answers.

As shown in Fig. 1, an image can be represented by multiple
text expressions for each detected object from object detector.
The relationships between multiple objects are efficiently ex-
pressed in the format of text. The proposed method predicts the
answer ‘‘pizza’’ by simultaneously considering text expressions
‘‘woman slicing pizza’’ as well as the attributes ‘‘woman’’, ‘‘slic-
ing’’, and ‘‘pizza’’. The generated expression ‘‘a woman is slicing
a pizza’’ serves as the foundation for the final answer. Attention
mechanisms have been applied in numerous uni-modal deep
neural networks (Bahdanau et al., 2015; Mnih, Heess, Graves,
et al., 2014; Shih, Singh, & Hoiem, 2016). In recent studies, the si-
multaneous learning of co-attention for visual and textual modal-
ities has yielded fine-grained representations of images and ques-
tions for VQA tasks (Anderson et al., 2018; Fukui et al., 2016;
Lu et al., 2017). Inspired by the Transformer model (Vaswani
et al., 2017) and Co-attention networks (Kim, Jun, & Zhang, 2018;
Nguyen & Okatani, 2018; Yu et al., 2019), we designed a joint-
embedding multi-head attention (JE-MHA) network, which con-
sists of a combination of three multi-head attention (MHA) mod-
ules for learning multi-modal embeddings. The JE-MHA network
takes three types of inputs: visual feature, question and text
expressions. It is because generated expressions are likely to be
question-relevant representations, owing to the representation
power of the speaker module, semantic understanding of a tar-
get image associated with the provided questions allows a VQA
model to learn the correct answers to questions.

Overall, our primary contributions can be summarized as fol-
lows: (1) we propose a novel speaker module that can con-
textually understand target objects by considering neighboring
objects. This allows us to generate local-scene-aware object text
159
expressions. (2) we designed a VQA framework with the pro-
posed JE-MHA network; this framework can model the question-
relevant text expressions with images and questions. (3) the
answer prediction performance of the proposed VQA model was
validated with complementary pairs. The quality of the generated
explanations was also evaluated and compared to that of other
methods. The results indicate that the proposed model focuses
on important factors for answer prediction.

The remainder of this paper is organized as follows. In
Section 2, we discuss studies related to our work. In Section 3,
we provide the details of the proposed methods for VQA and
expression generation. In Section 4, we present an analysis of the
results of our experiments. Finally, in Section 5, we conclude this
paper.

2. Related work

2.1. Visual question answering

Recent studies on deep learning based VQA systems have
used bottom-up visual features (Anderson et al., 2018; Kim &
Bansal, 2019; Li et al., 2018; Wu et al., 2019; Yu et al., 2019).
Such systems detect object attributes using pre-trained detectors,
trained on the noisy labeled Visual Genome dataset (Krishna et al.,
2017). Object-level features help VQA systems attain a semantic
understanding of images. One successful approach to VQA is the
Transformer model (Vaswani et al., 2017) with Co-attention (Kim
et al., 2018; Nguyen & Okatani, 2018; Yu et al., 2019). These meth-
ods employ a pre-trained text corpus that was collected from
a larger corpus in the natural language processing field. A large
number of VQA systems have adopted similar ideas of combining
attention over visual features and language features to increase
model capacity for question-relevant image understanding (Fukui
et al., 2016; Lu, Yang, Batra, & Parikh, 2016; Xu & Saenko, 2016).

Meanwhile, more recently, some researchers have adopted
text information as an input modality for VQA, such text is gener-
ated from images to supplement the visual relationships between
object representations (Kim & Bansal, 2019; Li et al., 2018; Wu
et al., 2019). Li et al. (2018) used a pre-trained captioner to
generate general captions based on a fixed annotator. The gen-
erated captions for image were fed into an answer predictor
in a VQA system. Therefore, these captions were not necessar-
ily relevant to the target questions. Wu et al. (2019) proposed
a question-relevant image captioner to generate captions that
are more likely to help the VQA system answer questions. A
novel caption-embedding module recognized important words in
captions, and produced caption embeddings tailored for answer
prediction. Kim and Bansal (2019) proposed a visual and textual
question answering model to generate caption paragraphs that
describe image details to use text as an additional input feature.
Their model combines information from text and images via
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Fig. 2. Overall framework of the proposed VQA system. The JE-MHA network takes RoI pooled image embeddings, question embeddings, and generated expressions
as input features. The model simultaneously learns multi-modal attention through a recursive structure and a classifier predicts final answers.
early fusion, late fusion, and later fusion. However, when a scene
becomes complex, image captions can easily disregard important
objects. Therefore, it is difficult to represent such scenes accu-
rately. To address this issue, we propose the JE-MHA network,
which can consider image, question and expression embeddings,
simultaneously. The proposed speaker module generates refer-
ring expressions considering local-scene-aware neighboring ob-
jects. Common contexts of targets can help identify important
objects and their relationships in a complex scene.

2.2. Referring expression generation

Referring expression generation is the task of generating an
informative sentence for a particular object in a complex scene.
Therefore, referred sentences are more unique and specific than
general image captions. Most studies on referring expressions
generation have directly compared the difference of visual at-
tributes, positions and sizes between the target object and posi-
tive pairs in the scene (Liu et al., 2017; Mao et al., 2016; Tanaka
et al., 2019; Yu et al., 2016, 2017). The positive pair means
that the target object and its pair object belong to the same
category, usually the most relevant object within an image, while
the negative pair means that the pair object has different cat-
egories from the target object (Yu et al., 2016). Such methods
generate sentences regarding particular objects while reducing
the ambiguity of expressions between multiple objects in a scene.
Therefore, large-scale referring expression generation datasets
(RefCOCO ,RefCOCO+ , RefCOCOg) have been developed, for this
task (Kazemzadeh, Ordonez, Matten, & Berg, 2014). Mao et al.
(2016) introduced a max-margin maximum mutual information
(MMI) training method that solves the problem of sentence am-
biguity and improves the performance of both generation and
comprehension tasks. Their method improved expressive power
for both generation and comprehension tasks. Yu et al. (2016)
proposed an explicit encoding method that compares visual fea-
ture between objects of the same category in an image. They
focused on the most salient objects, rather than general positive
pair objects. Liu et al. (2017) explored the role of attributes of
objects and their paired descriptions. Expressions were generated
by incorporating visual and learned attributes into the same
semantic space. Yu et al. (2017) proposed a unified framework for
both referring expression generation and comprehension tasks.
A speaker module and listener module were jointly trained by
minimizing the distance between paired objects and sentences
mapped in an embedding space. Tanaka et al. (2019) proposed
a method that can be interpreted accurately and quickly by hu-
mans. When a target is not salient, their model generates expres-
sions by extracting information from the target and environment.
A delicate understanding of scene context is essential for referring
expression generation. In this paper, the representation power
of detailed object relationships was maximized based on the
160
referring expressions of each target object. This method helps a
VQA model understand the context of complex scenes. Addition-
ally, the explanation quality of answers was also increased via
referring expression generation.

3. Proposed method

We present an explainable VQA framework with local-scene-
aware referring expression generation. The overall framework
and speaker module are illustrated in Fig. 2 and Fig. 3, respec-
tively. Given an image, the speaker module generates referring
expressions for each object considering the context of the target
object. Three different embeddings corresponding to each modal-
ity, namely region of interest (RoI) pooled image embeddings,
question embeddings, and expression embeddings are used as
inputs for the VQA model. A combination of MHA modules com-
prises the JE-MHA network, which operates recursively to obtain
three final feature vectors. Finally, the answer predictor computes
a confidence-level for each answer candidate.

3.1. Speaker module

In this section, we present our approach to generating object
expressions that are more detailed and precise for images with
crowded backgrounds. The proposed speaker module considers
neighboring features to understand the target object’s context.
The referring expressions are generated for every object pro-
posal of the object detector to not only bring as much additional
knowledge as possible for the accurate answer but also pro-
vide a human-interpretable explanation. We also encode context
features by calculating visual differences between a target and
its neighboring objects. We discuss local-scene-aware expression
generation for each object. The speaker module can generate
detailed and precise referring expressions for complex scenes.

3.1.1. Local scene context with neighbors
Pairs of objects in the same category, which are called positive

pairs, have been frequently considered to generate unambiguous
referring expressions in recent studies (Liu et al., 2017; Mao
et al., 2016; Tanaka et al., 2019; Yu et al., 2016, 2017). The
same category means that the pair of objects belongs to the
same ‘supercategory’. In this paper, we use RefCOCO supercate-
gories (Kazemzadeh et al., 2014), which are semantic concepts
encompassing several objects under a common theme. For ex-
ample, the supercategory ‘vehicle’ contains ‘bicycle’, ‘car’, ‘bus’,
‘truck’, etc. However, in real-world images, there are often many
surrounding objects that are not in the same category. The rel-
ative locations or sizes of objects are frequently considered to
identify positive pairs in an image, but these are insufficient for

understanding the overall context of a scene. The context of the
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Fig. 3. High-level illustration of our speaker module. Each detected object constitutes a target object and its neighbors. The expression generator uses the global
context, target object, and neighboring features to generate local-scene-aware text expressions. The LSTM is trained to minimize generation loss with reward loss.
L

w
t
e
e
p
a
p

p
r
(
e
t
g
f
g
a
t

▽

w
i
t
o
l
e
m
f

3

f
q
t
p
2

surrounding objects can be helpful for generating high-quality
referring expressions.

In this regard, we propose a local-scene-aware referring ex-
ression generation method that considers neighboring objects
hat are associated with target object features. Instead of utilizing
nly the locations and sizes of positive pairs of the target, dif-
erences in the visual features, locations, and sizes between the
arget and neighboring objects are extracted as visual comparison
eatures. The explicit encoding of the visual difference between
bjects in the same category within an image is effective for
he target context representation (Yu et al., 2016). Thus, we
dditionally adopt the visual comparison technique to minimize
mbiguity by learning the difference between the target and its
ositive pairs. This allows the proposed method to understand the
iscriminative aspects of the target object and leads to more pre-
ise expression generation, particularly in the scene with complex
ackground characteristics. For the object detector, we utilize the
aster-RCNN (Ren et al., 2015), to detect objects and extract local-
cene-aware features, including targets and neighbors. We extract
ive features: the target object oi, global context gi from the entire
mage, target location/size li, target context (differences in visual
eatures) δoi, and target location/size context (differences in lo-
ation/size) δli. The global context gi is modeled as the averaged
eatures of objects detected by Faster-RCNN within a scene. The
arget object oi is extracted as an RoI-pooled feature using a
egion proposal network (Anderson et al., 2018). The location
nd size of a target object in an image, which are defined by
he x, y coordinates of the top-left and bottom-right corners of
he object, as well as its absolute size, are represented as li =
xtl
W ,

ytl
H ,

xbr
W ,

ybr
H ,

wi·hi
W ·H

]
(see Fig. 3).

To identify meaningful neighbor objects around a target ob-
ect, we first eliminate duplicate object detection results us-
ng non-maximum suppression (NMS). After that, we select the
-nearest neighbor objects based on Euclidean distance to extract
he local scene context. Using the selected neighbors, we calculate
he target context δoi =

1
k

∑
j̸=i

oi−oj
∥oi−oj∥

, where k is the number of
bjects selected as neighbors and the target location/size context
li =

[
[△xtl]ij

wi
,

[△ytl]ij
hi

,
[△xbr ]ij

wi
,

[△ybr ]ij
hi

,
wj·hj
wi·hi

]
, which represents the

elative location and size of the target object among the neighbor
bjects.

.1.2. Referring expression generation
The local-scene-aware visual representation vi that is used to

generate discriminative sentences is a combination of the five
aforementioned image features and is defined as vi = Wm[oi,
gi, li, δoi, δli]. To generate object expressions for each referred
object, xt = [vi; wt ] that is a concatenation of vi and a word em-
bedding vector wt is fed into a long short-term memory (LSTM)
to minimize the negative log-likelihood with the parameters θ as
follows:

L1s (θ ) = −

∑
logP(ri|vi; θ ). (1)
i n
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We adopt the maximum mutual information (Mao et al., 2016)
constraint that can reduce the ambiguity by minimizing the log-
likelihood for positive pairs. Thus, the generated referring expres-
sions for the target object, oi, which is distinguished from the
expressions for positive pairs. There are two constraints; (1) the
ground-truth expression ri should be more likely to be generated
using the target object oi than using any other randomly sampled
object ok. (2) the target object should be more likely to generate
the ground-truth expression ri, rather than other expressions rj
for positive pairs. The marginal loss L2s (θ ) is calculated as follows:

2
s (θ ) =

∑
i

λs
1max(0,M1 + logP(ri|vk) − logP(ri|vi))

+ λs
2max(0,M2 + logP(rj|vi) − logP(ri|vi)), (2)

here vk denotes the visual representations of positive pairs of
arget objects, and λs

1, λ
s
2, and M1, M2 are marginal hyper param-

ters. The optimized marginal loss indicates that the generated
xpression is more focused on the target objects than the positive
air. It is because the MMI constraint is designed to maximize
nd to minimize the log-likelihood for the target object and the
ositive pair, respectively.
We also adopt a reinforcer module (Yu et al., 2017) to generate

recise referring expressions for each target object by calculating
eward loss. Specifically, a two-layered multi layer perception
MLP) network is used to evaluate the consistency between gen-
rated expressions and visual features. Expression representa-
ions and visual representations are combined by the MLP to
enerate reward loss. We use the local-scene-aware target object
eature vi as a visual feature and employ an LSTM to encode the
enerated expressions as sentence features. The evaluation scores
re then used as rewards. The policy-gradient technique is used
o optimize the reward function as follows:

θ J = −EP(W1:T |vi)[F (w1:T , vi)▽θ logP(w1:T |vi; θ )], (3)

here w and T denote a word vector and the number of words
n a sentence, respectively. The LSTM loss is used to minimize
he expression of positive pairs while maximizing the expression
f the target object by combining generation loss with reward
oss. Consequently, the speaker module can generate precise text
xpressions regarding the target object, which makes answers
ore accurate and increases the quality of the text expressions

ed into the VQA.

.2. Image, question, and expression embedding

In the proposed framework, the JE-MHA network takes three
eature representations as inputs, namely; image embeddings,
uestion embeddings, and expression embeddings. With regard
o the image embedding, we use 36 detected object regions
er image as a form of Up-down attention (Anderson et al.,
018). A Faster R-CNN head (Ren et al., 2015) with a ResNet-101

etwork (He, Zhang, Ren, & Sun, 2016) is employed for object
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Fig. 4. (left) MHA module takes queries, keys and values as inputs. Outputs are computed as weighted sums of inputs. (right) JE-MHA network takes image, question,
and expression embeddings as inputs. Each JE-MHA module outputs three different embeddings, which are used as inputs for the next module.
detection. The detection head was first pre-trained on the Visual
Genome dataset (Krishna et al., 2017), which was learned to
detect 1,600 object categories and 400 attributes. To generate
an output set of image features X, we extract RoI pooled image
eatures from the detected regions and perform NMS for each
bject category. The Word2Vec method is applied for question
mbedding. We used a publicly available pre-trained model for
he word embedding matrix of the 300-dimensional glove vec-
ors and fine-tune weights during training (Pennington, Socher,
Manning, 2014). Expression embedding is performed using a

tandard gated recurrent unit (Cho et al., 2014) with 512 hidden
nits. The hidden unit in the final stage is extracted as the
mbedding feature xc for the text expression of each object.

.3. Joint embedding multi-head-attention network

The visual, question, and expression embeddings are fed into
he JE-MHA network module to generate fused features. In this
ection, we elucidate the working of the JE-MHA module, which
onsist of a combination of three MHA modules. Multiple JE-
HAs are utilized recursively, and final results are combined

hrough a feed-forward network (FFN).

.3.1. Multi-head-attention
An attention function maps a query and set of key–value pairs

o an output, as discussed in Vaswani et al. (2017). We compute
he dot-product of the queries for all keys and divide each query
y

√
dk to scale each query dimension. Then, the softmax function

is applied to obtain weights for the individual values as follows:

Attention(Q , K , V ) = softmax(
QK T

√
dk

)V. (4)

The MHA is constructed by using linear projection to attend
each query jointly based on key and value features in the same
feature space. Then, a scaled dot-product is calculated h times in
parallel, as follows:

MHA(Q,K,V) = Concat(head1, . . . , headh)WO, (5)

headi = Attention(QWQ
i , KW K

i , VW V
i ). (6)

The dot-product-based attention functions (Lu, Batra, Parikh, &
Lee, 2019; Lu, Goswami, Rohrbach, Parikh, & Lee, 2019; Yu et al.,
2019), which consist of keys, queries, and values as input features
are more effective at embedding two different input modalities
compared to traditional attention techniques (e.g., additive atten-
tion) (Anderson et al., 2018; Lu et al., 2016; Teney et al., 2018).
Therefore, we utilize dot-product attention for our MHA to obtain
more discriminative embeddings compared to additive attention
techniques.
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3.3.2. JE-MHA network with image, question, and expression fea-
tures

The JE-MHA network utilizes three MHA modules to construct
connections between image, question, and expression embedding
features based on co-attention. Let Q ∈ RN×d denote a set of ques-
tion features containing N tokens. Each token has d-dimensional
features. Let X ∈ RM×d denote the image embeddings of the
d-dimensional features for M detected objects. The attention
module first utilizes the image embedding features X to produce
query vectors qx. It then uses the question features Q to generate
a key kq and value vq. The inner-product of the query qx and
key kq are computed to learn the softmax result for the attention
weights. The attention is then used to weight the value vectors
vq to generate weighted features, as defined in Eq. (4).

In our multi-head setting, h instances of the attended fea-
ture are computed using h different projections of the original
queries, keys, and values to improve the quality of attended
features (Vaswani et al., 2017). The projected vectors have d/h
dimensions to ensure that the numbers of parameters are on
the same scale. The output of the JE-MHA module following six
recursive processes based on the outputs of each MHA is a con-
catenation of the h heads of attended features with dimensions
of M × (d/h), resulting in a final output size of F ∈ RM×d. Fig. 4
presents the overall composition of the JE-MHA network and
MHA module.

3.3.3. Recursive block of the JE-MHA network
In the proposed VQA system, we combine JE-MHA modules

recursively. The input embeddings Qi, Xi
o, and Xi

c are used as the
question, image, and expression features for the ith recursion,
respectively. Additionally, we use MHA and FFNd to denote an
MHA module and the FFN layer with d output units, respectively.
Based on the inputs from the ith recursion, we compute the
(i + 1)-th recursion as follows:

Qi+1
= MHA(Qi,Qi,Qi), (7)

Hi+1
o = LayerNorm(MHA(Xi

o,Q
i,Qi) + Xi

o), (8)

Xi+1
o = LayerNorm(FFNd(Hi+1

o ) + Hi+1
o ), (9)

Hi+1
c = LayerNorm(MHA(Xi

c,Q
i,Qi) + Xi

c), (10)

Xi+1
c = LayerNorm(FFNd(Hi+1

c ) + Hi+1
c ). (11)

From the three final outputs of the recursive JE-MHA module,
namely Qt , Xt

o, and Xt
c , we construct a classifier to predict the

confidence for each answer candidate. To compute the vector
representations for Qt , Xt

o, and Xt
c , we adopt the attention fusion

approach as shown below:

q = (softmax(FFN1(Qt )))TQt , (12)

xc = (softmax(FFN1(Xt
c)))

TXt
c, (13)

xo = (softmax(FFN1(Xt
o)))

TXt
o, (14)



J.-J. Kim, D.-G. Lee, J. Wu et al. Neural Networks 139 (2021) 158–167

F
j

A

w

c
(
d
(
p

4

m
d
M
V
t
c
m
p
r
n
c
e

o
R
i
b
R
c
M
f
p
t
t
R
l
d
p
a

4

m
t
e
f
f
s
e
r
o
a
C
T
t
w

inally, the answer confidence is computed as a projection of the
oint question, image, and expression features as follows;

= FFN|dict|(q ⊙ (xc + xo)), (15)

here |dict| denotes the word corpus of training data.

4. Experiments

We validated the effectiveness of the proposed method by
omparing it to state-of-the art methods on the VQA v2.0 dataset
Antol et al., 2015) to evaluate the accuracy of answer pre-
iction and on the RefCOCO, RefCOCO+, and RefCOCO datasets
Kazemzadeh et al., 2014) to highlight the explainability of the
roposed method.

.1. Datasets

Visual question answering. We evaluated our proposed VQA
odel on the recent VQA v2.0 dataset (Antol et al., 2015). This
ataset contains 1.1 million question and answer pairs based on
SCOCO images. The training, validation and test splits of the
QA 2.0 dataset were collected from the training, validation, and
est splits of MSCOCO dataset, respectively. This dataset includes
omplementary VQA pairs that ask the same question for two se-
antically similar images with different answers. Because these
airs of images are semantically similar, fine-grained reasoning is
equired to answer the question correctly. Therefore, our expla-
ations focus on the important factors for predicting answers that
an be compared for complementary pairs. Each question and
xpression have fixed lengths of 14 and 20 words, respectively.
Referring expression generation. We performed experiments

n three expression datasets (RefCOCO, RefCOCO+, and
efCOCOg) (Kazemzadeh et al., 2014) collected from MSCOCO
mages. The RefCOCO and RefCOCO+ datasets are constructed
ased on the Image CLEF IAPR image retrieval dataset. For the
efCOCOg dataset, all the training, validation and test splits were
onstructed on images sampled from the training split of the
SCOCO dataset. Since text expressions, which are generated

rom images, are utilized as an important component of the
roposed method, we validated the quality of our generated
ext expressions. RefCOCO and RefCOCO+ were collected with
ime constraints for easily identifying target objects, whereas
efCOCOg was collected with no interactive settings and contains
onger expressions than those in RefCOCO and RefCOCO+. Each
ataset has 3.9 total objects and 1.63 objects of the same type
er image. Overall, the three datasets contain 142,210, 141,565,
nd 104,560 expressions, respectively.

.2. Implementation details

We optimized our speaker module using the Adam opti-
izer (Kingma & Ba, 2014) with a batch size of 128 and initialized

he learning rate to 4e-4. The learning rate was set to decay by 0.5
very 500 iterations. The hidden state size of the LSTM generator
or word embeddings was set to 512. Additionally, we empirically
ound that considering 20 neighbors with a 0.7 IoU in the NMS
tage yields optimal results. For the reinforcer, our model gen-
rates three sample sentences and estimates the corresponding
ewards. During the test, we used beam search with a beam size
f 10. For question and expression embedding, text preprocessing
nd tokenizing for UpDn features was performed using Stanford’s
oreNLP (Manning et al., 2014) following (Anderson et al., 2018).
he questions and expressions were first converted to lower case,
rimmed to a maximum of 14 words, then tokenized based on
hite spaces. During the training phase, we trained our system
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Table 1
VQA performance comparisons between the proposed method and competing
methods on the VQA v2 test-dev and test-std split.
Method Test-dev Test-std

All Yes/No Num Other All

Bottom-up (Anderson et al., 2018) 65.32 81.82 44.21 56.05 65.67
MuRel (Cadene et al., 2019) 68.03 84.77 49.84 57.85 68.41
Caption VQA (Wu et al., 2019) 66.10 82.80 44.10 56.80 68.40
MCAN VQA (Yu et al., 2019) 70.63 86.82 53.26 60.72 70.90
MFH (Yu et al., 2018) 68.02 – – – –
MFH+Bottom-Up (Yu et al., 2018) 68.76 84.27 49.56 59.89 –
BANGlCnt (Kim et al., 2018) 70.04 85.42 54.04 60.52 70.35
DFAF (Gao et al., 2019) 70.22 86.09 55.32 60.49 70.34
DCN (Nguyen & Okatani, 2018) 66.87 83.51 46.61 57.26 66.97
Counter (Zhang et al., 2018) 68.09 83.14 51.62 58.97 68.41
JE-MHA (ours) 69.70 86.30 50.80 59.90 70.79

on the VQA v2 training set for 13 epochs using the binary cross-
entropy loss with soft scores, and BertAdam optimizer (Devlin,
Chang, Lee, & Toutanova, 2019) with a batch size of 64. After
10 epochs, the learning rate decayed by 0.2 every two epochs
according to the method described in Yu et al. (2019). For the
evaluation of VQA tasks, during the training phase of the speaker
module, we used the RefCOCOg dataset only to exploit their
abundant expressions for the target object.

4.3. Results for visual question answering with explanations

In this experiment, we first evaluated the performance of our
proposed VQA method on the VQA v2 dataset. We compared
its performance with the state-of-the-art methods, i.e., Bottom-
up (Anderson et al., 2018), MuRel (Cadene, Ben-Younes, Cord, &
Thome, 2019), MCAN VQA (Yu et al., 2019), Caption VQA (Wu
et al., 2019), MFH (Yu, Yu, Xiang, Fan, & Tao, 2018), MFH+Bottom-
Up (Yu et al., 2018), BANGlCnt (Kim et al., 2018), DFAF (Gao et al.,
2019), DCN (Nguyen & Okatani, 2018), and Counter (Zhang, Hare,
& Prügel-Bennett, 2018). After that, we also performed ablation
studies to evaluate the contributions of input modalities and the
effectiveness of using generated referring expressions.

Table 1 lists the answer prediction accuracies of each category
and the corresponding average values on the VQA v2 test-dev
split and test-standard split. We can see that the proposed JE-
MHA VQA achieved 69.70% and 70.79% accuracy on average, while
the recent state-of-the-art method, MCAN VQA (Yu et al., 2019)
achieves 70.63% and 70.90% on the test-dev split and test-std split
of the VQA v2 dataset, respectively. This is because the proposed
method showed a little short ability to count numbers. Even
though the proposed method showed slightly lower accuracy
on the test-dev split, it has the advantage of a capability of
human-understandable explanation generation. We believe that
the explainability can be the most promising characteristic of the
proposed framework. Furthermore, the proposed method showed
it showed one of highest accuracy in test-std split, and the state-
of-the-art performance on the validation split, of the VQA v2
dataset. We conducted a comparison with additional ablation
studies on validation split of VQA v2 dataset to show the effect
of text feature: We compared the JE-MHA VQA model in two
different settings: (1) visual features only and (2) visual features
+ text features.

The experimental result demonstrates the effectiveness of
each component of the proposed framework as shown in Table 2.
The textual feature without visual information showed 56.8% on
average, while the proposed model achieved 66.7% with both
visual and textual information. From this experiment, we can see
that a baseline model using the generated expressions under-

performs the proposed method. The results of the Tell-Answer
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Fig. 5. Example VQA results with generated text explanations. The influential objects with the top three attention weights are indicated by bounding boxes. Each
ox is colored according to the importance of the corresponding visual feature, where darker red colors indicate higher weight. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Qualitative comparison to the MCAN method in terms of answer prediction. The yellow boxes indicate the most-attended objects in our model and the
orresponding expressions are provided below (E:). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
able 2
QA performance comparisons with various input modalities on the VQA v2
alidation split. ‘‘Visual’’ and ‘‘Textual’’ denote that the VQA models use visual
r textual inputs, respectively.
Method Visual Textual All Yes/No Num Other

Tell-Answer (Li et al., 2018) ✓ 54.9 76.3 36.6 42.2
JE-MHA VQA ✓ 56.8 76.5 37.2 46.9
MCAN VQA (Yu et al., 2019) ✓ 66.4 84.3 48.2 57.7
Caption VQA (Wu et al., 2019) ✓ ✓ 65.8 82.6 43.9 56.4
JE-MHA VQA (visdif+text) ✓ ✓ 66.7 84.6 48.3 58.0

method (Li et al., 2018) indicate that learning appropriate text
expressions without visual features for VQA tasks can also yield
good answer prediction performances. The proposed method also
exhibits the best accuracy when only textual inputs are used. It is
noteworthy that the proposed method not only provides an excel-
lent answer prediction ability but also can provide explanations
for the answers.
164
Fig. 6 presents comparisons between the proposed method
and the MCAN (Yu et al., 2019) model. The green text in first lines
represents the original MCAN predictions, the blue text in second
lines represents the answers of our model, and the ‘‘E’’ phrases
in third lines represent the explanations generated from our
model. Our approach not only yields superior performance, but
also makes decisions understandable for humans by presenting
natural language expressions.

Additional examples of answer predictions with generated
explanations are presented in Fig. 5. Two different questions are
asked for each of the four images, and the information used
for predicting answers is presented in order of importance. The
bounding boxes represent the most influential objects and their
textual expressions with the top three attention weights. The
generated human-readable sentences can also provide insights
for interpreting the VQA model. One can see that the bound-
ing boxes of detected objects and generated explanations vary
depending on the questions. The representation power of the
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Fig. 7. Qualitative results for our referring expression generator on the RefCOCOg validation set and comparisons to the SLR model. Because the RefCOCOg dataset
onsist of longer sentences than RefCOCO, RefCOCO+, we trained our expression generator using the RefCOCOg dataset. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
able 3
omparison of our results to the state-of-the-art methods for referring expression generation for the RefCOCO, RefCOCO+, and RefCOCOg datasets. ‘‘+rerank’’ indicates
e-ranking the generated expressions according to the listener module. ‘‘SLR’’ denotes the original SLR model and ‘‘re-SLR’’ is a re-implemented version that uses
esNet image features as inputs.
Method Features from. RefCOCO RefCOCO+ RefCOCOg

Test A Test B Test A Test B Val

Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr

SLR (Yu et al., 2017) VGGNet 0.268 0.697 0.329 1.323 0.204 0.494 0.202 0.709 0.154 0.592
SLR+rerank VGGNet 0.296 0.717 0.340 1.320 0.213 0.520 0.215 0.735 0.159 0.662

re-SLR (Tanaka et al., 2019) VGGNet 0.279 0.729 0.334 1.315 0.201 0.491 0.211 0.757 0.146 0.679
re-SLR+rerank VGGNet 0.278 0.717 0.332 1.262 0.198 0.476 0.206 0.721 0.150 0.676

re-SLR (Tanaka et al., 2019) ResNet 0.296 0.804 0.341 1.358 0.220 0.579 0.221 0.798 0.153 0.742

RefGTA SR (Tanaka et al., 2019) ResNet 0.307 0.865 0.343 1.381 0.242 0.671 0.220 0.812 0.164 0.738
RefGTA SR+rerank ResNet 0.310 0.842 0.348 1.356 0.241 0.656 0.219 0.782 0.167 0.773

RefGTA SLR ResNet 0.310 0.859 0.342 1.375 0.241 0.663 0.225 0.812 0.164 0.763
RefGTA SLR+rerank ResNet 0.313 0.837 0.341 1.329 0.242 0.664 0.228 0.787 0.170 0.777

Our SR ResNet 0.119 0.230 0.100 0.162 0.152 0.316 0.114 0.398 0.086 0.223
Our SR+rerank ResNet 0.163 0.303 0.136 0.191 0.176 0.405 0.124 0.442 0.092 0.258

Our SLR ResNet 0.322 0.905 0.342 1.393 0.260 0.722 0.235 0.853 0.177 0.896
Our SLR+rerank ResNet 0.324 0.905 0.346 1.362 0.276 0.769 0.235 0.832 0.177 0.854
a
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r
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speaker module is highlighted by the diverse expression gener-
ation in these examples.

4.4. Results for referring expression generation

Since the proposed method aims to generate human-
nderstandable text explanations for the answer predictions, we
valuated the quality of generated explanations by comparing
hem to those provided by state-of-the-art referring expression
eneration methods, including the speaker–listener–reinforcer
SLR) model (Yu et al., 2017), re-implemented SLR (re-SLR)
Tanaka et al., 2019) and referring expression based on grand
heft auto V (RefGTA) (Tanaka et al., 2019).

The experimental results in Table 3 demonstrate that a rerank-
ng mechanism combined with a listener module improves
xpression quality in general, but such a combination is not
ery effective for the RefGTA model. In particular, the speaker–
einforcer (SR) model yields worse performance than the SLR
odel. However, in our expression generation module, because
ur listener module can locate the referred objects accurately,
etter expressions are generated and our method outperforms all
ompeting methods, including the RefGTA model.
For the qualitative comparison, we also compared our gen-

rated expressions to those generated by SLR (Yu et al., 2017)
n RefCOCOg dataset, which was used to generate textual ex-
ressions for VQA. Fig. 7 presents the generated expressions
nd target objects. One can observe that if the target object is
ccluded by other objects, our model understands the surround-
ng environment more accurately and generates less ambiguous
entences compared to SLR. This is important because our speaker
odule can generate referring expressions in complex situations,
herein ambiguous objects must be considered.
 O
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4.4.1. Comprehensive evaluation
In this section, we evaluate the performance of the speaker,

listener, and reinforcer modules comprehensively to show the
effects of each module for expression generation. Our model is
compared to the RefGTA (Tanaka et al., 2019) and SLR (Yu et al.,
2017) models, which are based on SLR strategies, for evaluation.
We calculated scores for the reinforcer/speaker modules using
the ground-truth bounding boxes for all objects given r , o∗

=

rgmaxiF (r, oi), and o∗
= argmaxiP(r|oi).

The results of our expression comprehension experiments are
isted in Table 4. The listener module plays a more important
ole in our model than in other models. This is because our
ystem considers the neighboring features of each target object.
s a result, our method can improve the performance of the
istener module by selecting a local-scene-aware context feature
o generate unambiguous expressions.

.5. Effectiveness of adjusting top-down attention

The proposed method also has an advantage in its ability to
djust top-down attention weights based on local-scene-aware
ontext analysis. In addition to providing explanations, our model
an focus and understand detailed images and questions.
Fig. 8 demonstrates that our model can attend regions in

omplex scenes accurately. We compared our model to the Tell-
nswer model (Li et al., 2018) to verify its effectiveness. Each
ox in the figure above represents the most attended region for
redicting a final answer. In other words, the boxes represent the
ain focal areas of our model. In the second example, our model
lso handles ambiguous references such as ‘‘yellow one’’ well.
ne can see that using generated expressions helps our model
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able 4
omprehensive evaluations on the RefCOCO, RefCOCO+, and RefCOCOg datasets.
‘Ensemble’’ indicates using both the speaker and listener or reinforcer. Our three
odules (speaker, listener, reinforcer) exhibit improved performance in most
ases compared to the state-of-the-art methods.
Method RefCOCO RefCOCO+ RefCOCOg

Test A Test B Test A Test B Val

SLR (ensemble) (Yu
et al., 2017)

80.08% 81.73% 65.40% 60.73% 74.19%

re-SLR(ensemble)
(Tanaka et al., 2019)

78.43% 81.33% 64.57% 60.48% 70.95%

re-SLR (listener) 81.14% 80.80% 68.16% 59.69% 72.36%
RefGTA SLR (listener)
(Tanaka et al., 2019)

79.05% 80.31% 65.75% 62.18% 73.39%

Our SLR (listener) 82.67% 78.83% 75.80% 63.69% 78.35%
RefGTA SR (reinforcer) 80.44% 81.04% 67.81% 58.97% 74.94%
Our SR (reinforcer) 82.17% 79.04% 74.88% 62.81% 78.41%
re-SLR (speaker) 80.70% 81.71% 68.91% 60.77% 72.55%
RefGTA SR (speaker) 82.45% 82.00% 72.07% 61.06% 70.35%
RefGTA SLR (speaker) 83.05% 81.84% 72.37% 59.13% 74.79%
Our SR (speaker) 67.98% 64.83% 61.04% 48.40% 63.85%
Our SLR (speaker) 83.21% 78.55% 76.40% 63.75% 78.31%

Fig. 8. Two examples of object-expression-based attention adjustment. The
object expressions help the VQA model adjust visual attention more accurately.
‘‘C’’ and ‘‘E’’ denote image captions and explanations, respectively.

accurately attend regions and understand questions in relatively
complex VQA scenes.

5. Conclusion

We proposed a novel JE-MHA framework for visual question
answering with explanations. The proposed speaker module gen-
erates local-scene-aware text expressions considering the spatial
context of neighboring features. The resulting high-quality ob-
ject expressions are combined with visual features and question
embeddings through the proposed JE-MHA network. Owing to
representation power of text expressions, and co-attention of
multimodal embedding, our VQA model can successfully predict
answers for questions and provide rich explanations regarding
scenes and questions. Experimental results showed state-of-the-
art performance on the VQA v2 dataset for answer prediction. We
166
also showed expression quality using the RefCOCO, RefCOCO+,
and RefCOCOg datasets by comparing different expression gener-
ation methods. Qualitative results for the generated expressions
indicated that the proposed method can accurately answer ques-
tions when scenes are complex. In the future, we will extend our
work on VQA with explanations to video data.
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